Simplifying Complex Security Assessments

Dr. Robert W. Baldwin Plus Five Consulting, Inc.

Baldwin@PlusFive.com

Outline

- Goals vs. Reality in Assessments
- Case Study: Secure Distributed Application Execution Platform
- Relevant & Missing Security Criteria
- Decomposition & Layering
- Limitations of Assessments
- Benefits of Assessments

Goals of Assessments

- Proof the Product is Secure
- Product Ensures the Integrity of the System
- Product Enforces Access Policy
- No Way to Circumvent the Policy

Realities of Assessments

- Few Relevant Assessment Criteria
- Never Enough Time for Custom Assessment
- Hard to Formally State "Security Criteria"

Case Study: InfoScape Product

- Powerful Trusted Computer Uses PC for I/O, Network, Bulk Storage
- Biometric Authentication
- Small Trusted User Interface
- Large Persistent Memory
- Multiple Separate Application Domains
- Application Control Infrastructure

Layers of Functionality

- Application Development Platform
- Secure Domain Enrollment and Setup
- Domain Specific Applications and Data
- Policy Based Access Controls
- Infrastructure for Auditing & Escrow
- Secure Communication and RPC

Layers of Functionality

- Cryptographic Protocols for Communication and Life Cycle Steps
 - Enroll Device, Register User, Download Applications, Manage Access Controls, Remote Method Calls, etc.
- Biometric Authentication
- High Performance Encryption and Integrity
 Verification Algorithms
- Attack Resistant Hardware
 - Passive, Internal, and Active

Relevant and Missing Criteria

- FIPS-140: Crypto Module
- Common Criteria: Trusted OS
 No Profile for Domain Separation
- Missing Criteria for Authentication, Protocols and Infrastructure Services
- Many Cryptographic Standards
 - SSL, S/MIME, X9.17, etc.
 - Most Irrelevant to This Device

Formal Security Criteria

- FIPS-140 version 2
- Levels of Assurance for Software and Hardware
- Compliance for Algorithms & Key Management
 - 3DES, AES, SHA1, HMAC-SHA1
 - RSA, DSS
 - PRNG with FIPS-186 Appendix 3.1
- Better Algorithms May Not Be Allowed
 - RSA, ECC, AES, HMAC

FIPS-140-2 Process

- Hire Consultant to Write Documents for Low Level, and Assist in Design for High Levels
 - Acts as Your Defense Attorney
- Hire National Certification Lab
 - Acts as Prosecutor for the State
- Submit Results to Government

 Acts as Judge

Formal Security Criteria

- Trusted Operating Systems, Databases, Networks:
 - Orange, Red and other Rainbow Books
 - Common Criteria
- Common Criteria Profiles for:
 - Smart Cards
 - OS with Discretionary Access Controls
 - OS with Mandatory Access Controls
 - No Profile For This Type of Device

Common Criteria Process

- Hire Team Familiar With Process
- Fulltime Work Upfront and Ongoing
- Hire National Certification Lab
- Large Amount of Negotiation
- Very Long Process

Recognized Security Standards

- No Evaluation Criteria or Certification Labs
- Must Check Appropriate and Correct Use
 - SSL/TLS, SSH, IPSec
 - S/MIME, PGP, PKCS #7, PKCS #15
 - X9.17, X9.42, etc.
 - Signed XML, SHTTP
 - SNMP v3, Radius, Kerberos

Missing Security Standards

Secure Application Development Platform

 OS, Network and File System, Remote Services
 Web Servers, Databases, Access Policies

 Programming Language

 Java and Ada

Missing Security Standards

- Record and File Encryption
- Creating and Using Audit Records
- Key Storage, Key Recovery, Control Use Of Recovered Keys
- Authentication & Biometrics
- Tempest (Hardware Level Attacks)

Missing Cryptographic Standards

- Very Fast, Key-Agile, Cipher for High Throughput and Transaction Rates
- Very Fast Public Key, Small Public Key – NTRU
- Tiny Code Size, Tiny RAM, Low Power
 XTEA, Skipjack, RC4

Evaluating Custom Security

- State Objectives
- Must Link Objectives to Higher Goals
- Hire Layer Expert
- Correct and Appropriate Use of Standards?
- Sound Engineer Discipline/Approach for Custom Mechanisms?

New Cryptography

- Hard to Get Experts Interested
 - Always Find Some Area of Concern
- Can Take Decades for Academic Consensus
 NIST: DES, SHA1, DSS and AES
- Can Skip Academic Consensus
 - GSM's A5 cellphone encryption
 - IEEE 802.11 With RC4 & CRC
 - RSA, MD5, RC4
 - Netscape's SSL (v3+)
 - Sony's M6 for DRM
 - Intel's DTCP Video for DRM

- -- Disaster
- -- Disaster
- -- Good
- -- Good
- -- Maybe
- -- Maybe

Decomposition & Layering

- What must I assume about the lower layer to convince myself this layer works?
 – Write These Down!
- <u>Ex:</u> Crypto Layer Assumes that Hardware Layer Resists Passive and Active Attacks
- Usually Need Upward Signaling
 - Indicate When Hardware Attacked.
- Examine Internal (Same-Layer) Attacks

Layering Problems

- Lower Layer Discovers New Assumption About Upper Layer Behavior
- Upper Layer Creates New Assumption on Lower Layer Security
- Layer Integration: Check Upward and Downward Assumptions

Limitations of Assessments

- Compliance to FIPS-140 or Common Criteria Appears Deterministic
 - Actually Many Fine Points Get "Argued"
- Assessment Evaluations Always Find Something to Improve
 - Clear Objectives Help
 - Must be Driven Top Down to Match Higher Level Goals

Limitations of Assessments

- Limited Time and Lack of Formal Process means that Results are "Best Guess"
- Buying "Reputation Credit" from Independent Expert
- Can Loop on Breaking and Improving
 - Loss of Independence for Expert

Overall Benefit of Assessments

- Required in Some Markets (FIPS-140)
- Helps with Funding and Marketing

 Gain Reputation Capital from Experts
- Avoid Silly Mistakes
- Discipline of Preparing for Assessment Improves Quality

Questions?

• Baldwin@PlusFive.com